Statistical Field Theory for Latecomers

Andrea Cavagna

A Course in 20 lectures held in the spring semester of 2015 for the PhD students in Physics at the University Sapienza

- Part 1: Statistical Mechanics (10 lectures, 20 hrs)
 - 1. Ensembles Energy, entropy, free energy
 - Microcanonical ensemble
 - Maximum entropy principle
 - Canonical ensemble
 - Helmoltz free energy
 - A tale of many entropies
 - Thermodynamic temperature
 - 2. Gibbs free energy and susceptibility
 - Magnetization m and magnetic field h
 - Legendre transform
 - Gibbs and Helmoltz free energy: $g_{\rm G}(m)$ vs $f_{\rm H}(h)$
 - Susceptibility χ : fluctuation and curvature of the free energy
 - The generalized (nonconvex) Gibbs free energy g(m)
 - 3. Correlation function
 - Connected correlation function G(r)
 - The role of the fluctuations
 - Correlation length ξ
 - Susceptibility and the space integral of G(r)
 - Relationship between χ and ξ
 - 4. Correlation function w/out ensemble averages
 - What happens when you have real data
 - Space-averaged correlation function G(r)
 - How to connect the correlation function
 - The effect of the sum rule
 - Proxies of the correlation length ξ
 - Long-ranged vs short-ranged G(r)
 - 5. Phase transitions
 - Competition between energy and entropy
 - Ising model and the mechanism of imitation
 - Mean-field solution of the ferromagnetic p-spin model
 - Explicit calculation of the generalized Gibbs free energy g(m)
 - Second order phase transition (p = 2) and the transition temperature T_c
 - First order phase transition (p = 3) and the spinodal temperature T_d

- 6. Problems & Solutions class
 - Saddle point method
 - Proof that g''(m) can change sign also for $N < \infty$
 - Why $\chi < \infty$ for $N < \infty$ even when g''(m) = 0?
 - General form of $\partial m(T)/\partial T$ and its divergence at T_c
- 7. Form of the Gibbs free energy below T_c
 - What happens to $g_{\rm G}(m)$ when g''(m) < 0
 - The $h \to 0$ vs $N \to \infty$ limit
 - Spontaneous symmetry breaking
 - The function m(h)
 - Maxwell's construction
 - Phase separation
 - Is χ finite or not in a first order phase transition?
- 8. Metastability and classic nucleation theory
 - Local minima of the generalized Gibbs free energy g(m)
 - Droplet argument: surface tension resistance vs free energy drive
 - Expression of the free energy barrier
 - Role of the dimension and of finite size
 - The special case of mean field
- 9. Dynamics I
 - Langevin equation
 - Green functions method
 - Explicit solution for a free particle (Brownian motion)
 - Einsten's relation between friction and noise
 - Overdamped limit and the rescaling of time
 - Explicit solution for a particle in a harmonic potential
 - * ballistic regime
 - * diffusive regime
 - * saturation
- 10. Dynamics II
 - Dynamical propagator and response
 - Dynamical correlation function
 - General relations between response and correlation
 - Gaussian dynamics in the scalar and vectorial case
 - Comparison between dynamics and statics

- Part 2: Field Theory (10 lectures, 20 hrs)
 - 1. Landau-Ginzburg model
 - Role of scale invariance
 - Coarse graining: from σ_i to $\varphi(x)$
 - Entropy contribution
 - Energy contribution
 - The change of sign of the bare mass $\mu^2(T)$
 - The Landau-Ginzburg $\lambda \varphi^4$ Hamiltonian
 - 2. Landau approximation (LA)
 - The simplest solution of the Landau-Ginzburg model: $\varphi(x) = \varphi_0$
 - Physical meaning of the LA: $\xi \ll v^{1/d}$
 - LA and mean-field Gibbs free energy
 - Critical temperature in the LA
 - Critical exponents in the LA
 - 3. Gaussian field theory I
 - Meaning of the Gaussian case
 - Modes separation and exact solution
 - The Gaussian propagator $G_0(k) = \frac{1}{k^2 + \mu^2}$
 - -G(r) and role of the cutoff Λ
 - Changing the cutoff Λ : a foreshadow of renormalization
 - Gaussian and Landau critical exponents from dimensional analysis
 - 4. Gaussian field theory II
 - A physical realization of the Gaussian case: anchored oscillators chain
 - Symmetry braking and zero mode
 - How can the correlation be inversely proportional to the interaction?
 - Dynamics of the Gaussian field theory
 - 5. Diagrammatic expansion
 - Wick theorem
 - Feynman diagrams
 - Expansion of G(k): bubble, saturn and cactus diagrams
 - Vacuum fluctuations
 - 1PI and amputated diagrams
 - Self energy and Dyson equation
 - Vertex function $\Gamma^{(2)}(k)$ and susceptibility
 - Loop expansion vs λ -expansion
 - $6. \ Renormalization \ I$
 - General idea: arbitrariness of the cutoff Λ
 - Mass renormalization at one loop
 - Mass renormalization at two loops
 - Insensitivity to the cutoff Λ at two loops
 - Substituting $\mu^2 \to m^2$ in all diagrams

- 7. Renormalization II
 - Field renormalization
 - Coupling constant renormalization
 - When is a theory renormalizable?
 - Ginzburg criterion: d > 4 vs d < 4
- 8. The Renormalization Group I
 - Brief historical overview
 - Real space renormalization: blocking
 - Fixed points and critical manifold
 - Momentum shell renormalization: Gaussian case
 - * The $\{\varphi_{>}(k), \varphi_{<}(k)\}$ split
 - * Recursive relations and β -function
 - * What is special in the Gaussian case?
 - * Instability of $\lambda = 0$ under renormalization
- 9. The Renormalization Group II
 - Momentum shell renormalization at one loop
 - * Why $\lambda \varphi^4$ is different: the coupling $\varphi_>(k) \cdot \varphi_<(k)$
 - * Recursive equation for the mass μ^2 and the coupling constant λ
 - * The key idea of the ϵ -expansion
 - * The Wilson-Fisher fixed point
 - * The flow of the coupling constant λ : d > 4 vs d < 4
 - Callan-Symanzik (CS) equations
 - * CS equations in bare space
 - * Comparison of the β -function in CS and in momentum shell: $\int_{\Lambda/b}^{\Lambda} vs \int_{0}^{\Lambda/b}$
 - * CS in renormalized space
- 10. Continuous symmetry breaking
 - Discrete vs continuous symmetry
 - The $\lambda(\vec{\varphi} \cdot \vec{\varphi})^2$ model below T_c and the mexican hat paradigm
 - The massless Goldstone mode
 - Derivation of Goldstone theorem from the Ward identities
 - Mermin-Wagner theorem and the role of spin waves
 - $-\chi = G(k)|_{k=0}$ vs $\langle \delta \varphi^2 \rangle = G(r)|_{r=0}$
 - The effect of the vertex $\varphi_{\parallel}\varphi_{\perp}\varphi_{\perp}$
 - An unexpected result: $\chi_{\parallel} \sim \chi_{\perp}^{\epsilon/2} \to \infty$
 - Physical meaning of the divergence of the longitudinal susceptibility
 - Where is the massive particle?