

Optical properties of ancient paper are governed by structural disorder of cellulose

Braidotti M. C., Mosca Conte A., Violante C., Conti C., Fastampa R., Pulci O., Lojewska J., <u>Missori M.</u>

Yellowing of ancient paper

APPLIED PHYSICS LETTERS 104, 224101 (2014)

Visual degradation in Leonardo da Vinci's iconic self-portrait: A nanoscale study

A. Mosca Conte,¹ O. Pulci,^{1,2} M. C. Misiti,³ J. Lojewska,⁴ L. Teodonio,^{1,5} C. Violante,¹ and M. Misson⁵

Illi Minari

Paper: morphology and chemistry

M. Bicchieri, et al., J. of Raman Spectr. 37, 1186 (2006).T. Lojewski, et al., Carbohydrate Polymers 82, 370 (2010).

Variation of optical properties (yellowing)

UV-Vis spectroscopy of ancient paper

PHYSICAL REVIEW B 89, 054201 (2014)

Optical response of strongly absorbing inhomogeneous materials: Application to paper degradation

M. Missori,¹ O. Pulci,^{2,3} L. Teodonio,^{1,4} C. Violante,² I. Kupchak,⁵ J. Bagniuk,⁶ J. Łojewska,⁶ and A. Mosca Conte²

Theoretical simulations of cellulose UV-Vis absorption

Temperature effect on spectral line shapes of chromophores in solid

Molecular dynamics simulations

Disorder-induced broadening of the absorption line shape of a chromophore in a solid matrix

Prathamesh M Shenai et al., Disorder and spectral line shapes in two-level systems, Chem. Phys. Lett. 582, 66-70 (2013)

Experimental set-up for low-temperature UV-Vis spectroscopy of paper

Light source
$$I_{o}(\lambda)$$
 $I_{o}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda)$ $I_{meas}(\lambda) = \alpha(\lambda) + \alpha_{s}(\lambda)$

 $\frac{I_s(\lambda)}{I_0(\lambda)} \propto t\sigma(\lambda) \propto t(n_c^2 - n_m^2)^2$

Decreasing the scattering of paper

Refractive index of cellulose $n_c^{\simeq}1.5 \rightarrow$ refractive index matching material must be cryogenic, UV transparent, low viscosity \rightarrow enamel of acrylate polymers ($n_c^{\simeq}1.46$)

refractive index matching of a paper sample

paper samples on a fused silica substrate

sample mounted on the cryostat cold-finger

Experimental results

Absorption and scattering (modeled by a polynomial) contributions of a paper sample

Absorption (subtracted of scattering) vs photon energy

 \rightarrow tiny differences vs temperature

Chromophores localized in the disordered regions of cellulose fibers

Cellulose fibers are composed of ordered and disordered regions

Arrangement of cellulose polymers within elementary fibrils of cellulose

Crystalline regions are unaffected by oxidative degradation

Conclusions

The absorption spectra of paper show negligible modifications as function of temperature (14-300K).

These results can be explained according the following hypothesis:

dynamic effects due to temperature are negligible with respect to those due to structural disorder;

chromophores that are relevant for UV-Vis absorption (responsible for yellowing of ancient paper) are localized in the disordered regions of cellulose fibers.

We acknowledge CPU time granted by CINECA, funding from the EC's FP7 grants no. 211956 (ETSF user project 211), CISSCA, ICRCPAL-MIBACT.