

NMR Laboratory

NMR Anomalous Diffusion Measurements to investigate complex systems: experiments

Silvia Capuani

*CNR-ISC UOS Roma Dipartimento di Fisica Sapienza Università di Roma Laboratorio di Risonanza Magnetica Nucleare Edificio Fermi stanza 319, Edificio Segre' Laboratorio 5

silvia.capuani@roma1.infn.it

27-28/09/2016

ISC Meeting tematico sulla diffusione, Sesto Fiorentino

NMR Anomalous diffusion Highlights

Molecular diffusion in soft condensed matter: porous heterogeneous, complex systems

Biophysical applications

Translational longitudinal studies in Humans

Transfer of technology

Experimental corroboration of simulations and theories

Why would we want to evaluate the Diffusion parameters of water in materials and biological Tissue?

Because Diffusion parameters and diffusion-weighted NMR signal reflect the micro-structural rearrangement of porous materials and tissues

We cannot measure the Diffusion Coefficient of water (or of generic ions and molecules) using NMR

We can measure the displacement of the ensemble of spins in our sample and infer the Diffusion Coefficient. Diffusion MR images can measure water proton displacements at the cellular level

Probing motion at microscopic scale (10 μ m), orders of magnitude smaller than macroscopic MR resolution (mm)

This has found numerous research and clinical applications

Can probe diffusion for time scales: 1 ms to seconds length scales of displacements: 100 nm to100 µm

Conventional diffusion

Anomalous diffusion

Porous Media

- Intrinsically multiphase materials
- Pore fluids for NMR detection Microstructure is important
- Rocks, oil and water reservoirs
- Soils, unconsolidated formation
- Cement and concrete, catalysts
- Food stuff, paper, fabric
- Plant and animal tissues, bone
- Human tissues
- Brain

Gaussian diffusion: diameter of the spatial range, d, accessible to a water molecule in a given diffusion time t

 $L_{\rm D} = d \cong (6Dt)^{1/2}$

Prostate Cancer staging

NMR principles

 $S(t) = f(N, T_1, T_2, T_2^*, CS, J, D,)$

RF sequences $\begin{array}{c|c} \hat{H}_1 & \hat{H}_2 & \hat{H}_n \\ \hline \tau_1 & \tau_2 & \tau_n \end{array}$

Magnetic field gradients: imaging

$$ω_0 = γ H_0$$

Spectroscopy

 $ω(\mathbf{r}) = \gamma (\mathbf{H}_0 + \mathbf{G} \cdot \mathbf{r})$

Imaging

Magnetic gradients: imaging

$$M_{0} = \frac{N\gamma^{2}\hbar^{2}I(I+1)}{3KT}H_{0} = XH_{0}$$

(b)

In heterogeneous and complex samples $\Delta \chi$ at the interface between different tissues or materials

Gaussian Motion Propagator

The diffusion weighted signal is proportional to the characteristic function of the diffusion propagator in time Δ

$$S(\vec{q}, t = \Delta) \propto \int P(\vec{R}, \Delta) e^{i\vec{q}\cdot\vec{R}} \propto W(\vec{q}, t)$$

$$\vec{q} = \gamma \, \vec{g} \, \delta$$

 $\Delta = \text{diffusion time t}$

Diffusion tensor Imaging

NMR diffusion

$$\frac{\mathcal{S}(t)}{\mathcal{S}_{0}} = \exp\left(-\sum_{i,j=1}^{3} b_{ij} D_{ij}\right)$$

$$\underline{\mathcal{D}} = \begin{pmatrix} \mathcal{D}_{xx} & \mathcal{D}_{xy} & \mathcal{D}_{xz} \\ \mathcal{D}_{yx} & \mathcal{D}_{yy} & \mathcal{D}_{yz} \\ \mathcal{D}_{zx} & \mathcal{D}_{zy} & \mathcal{D}_{zz} \end{pmatrix}$$

$$\underline{\mathcal{D}} = \begin{pmatrix} \mathcal{D}_{1} & 0 & 0 \\ 0 & \mathcal{D}_{2} & 0 \\ 0 & 0 & \mathcal{D}_{3} \end{pmatrix}$$

$$V_{1}, V_{2}, V_{3}$$

 $D_1v_1^2 + D_2v_2^2 + D_3v_3^2 = c$

At least six independent parameters are required. At least six no-complanar

Basser et al., JMR, 1994 (103) 247

Diffusion tensor Imaging

MD and FA maps

MD and FA Quantitative images

Diffusion Tensor Imaging

Prostate Cancer staging

Axon mean diameter ≈7µm Microtubulus ≈20nm

 $< \underline{r^2} > = 6 D\Delta$

 $(< \frac{r^2}{2} >)^{1/2} \approx 30 \mu m$

Where: $D \cong 1x10^{-9} \text{ m}^2/\text{s}$ $\Delta = 80 \text{ms}$

Anomalous diffusion

<X²>

Transient anomalous diffusion can be defined when MSD = T_D^{α} with α < 1 for t<< T_{CR} and MSD = T_D for t>> T_{CR} where T_{CR} the crossover time.

Measure of Anomalous diffusion parameters

How to determine α and γ

Anomalous diffusion in 3D porous media: experiments

(Bio)-physical interpretation of α and γ parameters

a parameter

Application to multiscale porous materials

Highly porous polymeric matrices with randomly oriented interconnected pores obtained from a solution of polyvinyl alcohol and etyltrimethylammonium bromide (PVA scaffolds)

- void size distribution: 10-100 μm
- interconnection size distribution: 4-50 μm
- the three scaffolds differ in the roughness of the walls of their voids and interconnections

Barbetta A. et al., Soft Matter, 6 (2010)

a parameter

Gaussian approach

Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation

Anomalous diffusion approach

Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation

Application to multiscale porous materials

fractal dimension of the random path $_{3,0}$

$$d_w = 2/a$$

 α quantifies global structural complexity

Palombo M., Barbetta A., Cametti C., Dentini M., Capuani S., in preparation

Anomalous diffusion in 3D porous media: experiments

(Bio)-physical interpretation of α and γ parameters

 $\mathbf{B}_{\text{ind}} \sim \Delta \chi^* \mathbf{B}^* \mathbf{A}^* \mathbf{COS} \boldsymbol{\theta}$

Increase of the image contrast Enhanced interface contrast

M. Palombo et al. JMR 2012

Pseudo-superdiffusion

multi-compartmentalization

intravoxel diffusion heterogeneity in space, i.e., water molecules diffuse with considerably different free lengths.

due to both water **multi-compartmentalization** and **magnetic susceptibility differences** ($\Delta \chi$) at the interface between different compartments

Multi-compartimentalization + magnetic susceptibility differences ($\Delta \chi$)

Superdiffusion process ($\gamma < 1$) is spurious, not real but due to local ΔX (or G_i) at the interface between beads and water

Without boundary effects (no G_i)

Brownian Diffusion

Phase $\Delta \phi \propto |\mathbf{g}|$

Brownian Diffusion

Brownian Diffusion

Spectroscopy, Brownian Diffusion

With boundary effects: G_i

Spectroscopy pseudo-superdiffusion

Spectroscopy pseudo-superdiffusion

Pseudo-Super Diffusion Imaging

Pseudo-Super Diffusion Imaging

Pseudo-Super Diffusion Imaging

γ parameter

Application to clinical diagnostics

Diffusion reflect the micro-structural rearrangement of tissues

BRAIN AGING

seuro gla

Guerreri M., Caporale A., Palombo M., Bozzali M., Capuani S., submitted

NMR Laboratory

To investigate samples...

To investigate Human subjects...

H₀=9.4T

Thank you for your attention

silvia.capuani@roma1.infn.it

NMR Laboratory

NMR laboratory staff

Alessandra Caporale (PhD student) Michele Guerreri (PhD student)

Maria Giovanna Di Trani (MS student) Guglielmo Genovese (MS student) Physicist collaborators Andrea Gabrielli, CNR ISC Vito Servedio, CNR ISC Marco Palombo , CEA Fontenay-aux-Roses (France) Chemical collaborators Felix Wehrli, Penn University (USA) Andrea Barbetta, Sapienza

Medical collaborators:

Marco Bozzali, Neuorimaging Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy.

Department of Diagnostic and Interventional Radiology,
 Molecular Imaging and Radiotherapy & Orthopedic and Traumatology Dip.
 PTV Foundation, "Tor Vergata" University of Rome,