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The non-backtracking matrix (or NB-matrix for short) has many applications in network science, in
particular in node centrality and epidemic thresholds. Let λ be its leading eigenvalue. In epidemiology, 1/λ
is a good approximation for the epidemic threshold of certain network dynamics. In this work, we introduce
efficient ways of identifying which nodes have the largest impact on λ. We do so by studying the spectrum
of the NB-matrix after a node is removed from the graph. From this analysis we derive two new centrality
measures: X-degree and X-non-backtracking centrality.

Given a graph G, the NB-matrix B is indexed in the rows and columns by directed edges, and it is
defined by Bk→l,i→j = δjk (1 − δil), where δ is the Kronecker delta. Consider a node c, and let λc be the
leading eigenvalue of the NB-matrix of the graph after c has been removed. We call λ − λc the eigen-drop
induced by c. Computing the eigen-drop is computationally expensive. Our spectral analysis naturall yields
two new proxy measures that are highly correlated with the eigen-drop (see Fig. 1) and faster to compute.

First, the X-degree centrality of node c is defined as (
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, where (aij) is

the adjacency matrix of G and ki is the degree of node i. Second, the X-non-backtracking centrality of c is
defined as (

∑
i acivi)

2 −
∑

i aci (vi)
2
, where vi is the so-called non-backtracking centrality of i.5 Note the

similarity of these expressions: they are both defined as a function of the second moment of the distribution
of a node’s neighbors’ (degree or non-backtracking) centralities. Note also the similarity between X-degree
and the Collective Influence measure.6 We think of X-degree as a second-order aggregation of the excess
degree values (ki − 1), whereas CI is a first-order aggregation. Importantly, our two measures are derived
in ways entirely different from the derivation of CI, based on a novel spectral perturbation analysis. These
similarities will be explored in future lines of research.

We perform extensive experimentation with targeted immunization strategies derived from these cen-
trality measures, whose objective is to reduce λ as much as possible. Our algorithms have average time
complexity that is linear in the number of nodes in G. Additionally, we further explore the implications of
the X-centrality framework, whose formulae indicate that nodes whose neighbors’ centralities have small
variance (i.e. large second moment) will have a large influence on λ.
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Fig. 1. Eigen-drop and X-Centrality are highly correlated. Each marker represents one node randomly sampled
from a graph. WS: Watts-Strogatz, SBM: Stochastic-Block Model, BA: Barabási-Albert, BTER: Block Two–Level
Erdős-Rényi. We sampled 100 graphs per model, each with 105 nodes. Dashed black lines are linear regression lines.
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