

Critical Parametric Quantum Sensing

Simone Felicetti

Istituto di Fotonica e Nanotecnologie CNR-IFN, Rome

21/10/2021

Outline

Outline

• Fundamental limits Resources: $\langle \hat{N}
angle$

- 1- Quantum Magnetometry
- Practical applications
- 2- Qubit readout

Quantum metrology

$$\hat{H}_B = \hat{H}_{sys} + B \; \hat{H}_I$$

Preparation

Evolution

Measurement

Quantum metrology

 $\hat{H}_B = \hat{H}_{sys} + B \; \hat{H}_I$

Evolution

4

Measurement

limit

Quantum metrology

 $\hat{H}_B = \hat{H}_{sys} + B \,\hat{H}_I$

Evolution

Measurement

Critical sensors

Bubble chamber (Liquid-gas)

(CERN image archives)

Transition-edge sensors (Superconductor-normal)

(NIST image archives)

Critical quantum sensors

7

Infinite precision

Infinite precision

Infinite time..

Infinite precision

Infinite time..

Time is a resource CQM

Marek M. Rams,^{1,*} Piotr Sierant,^{1,†} Omyoti Dutta,^{1,2} Paweł Horodecki,^{3,‡} and Jakub Zakrzewski^{1,4,§}

Dicke model
$$H = \omega_c a^{\dagger} a + \frac{\omega_q}{2} \sum_{i=1}^N \sigma_i^z + \frac{g}{\sqrt{N}} (a + a^{\dagger}) \sum_{i=1}^N \sigma_i^x$$

Quantum Rabi model

Superra	idiant phase transition in the scaling limit
۰.	$\Omega/\omega_0 o \infty$

Quantum Rabi model

$$H_{\text{Rabi}} = \omega_0 a^{\dagger} a + \frac{\Omega}{2} \sigma_z - \lambda (a + a^{\dagger}) \sigma_x$$

Normal phase $\lambda < \lambda_c$

Superradiant phase transition in the scaling limit $\Omega/\omega_0
ightarrow \infty$

9

Superradiant phase $\lambda > \lambda_c$

L. Bakemeier, et al., Phys. Rev. A 85, 043821 (2012).

M.-J. Hwang, et al., Phys. Rev. Lett. 115, 180404 (2015).

9

Quantum Rabi model

Superradiant phase transition in the scaling limit $\Omega/\omega_0 \to \infty$

Superradiant phase $\lambda > \lambda_c$

L. Bakemeier, et al., Phys. Rev. A 85, 043821 (2012).

M.-J. Hwang, et al., Phys. Rev. Lett. 115, 180404 (2015).

Quantum Rabi model

9

L. Bakemeier, et al., Phys. Rev. A 85, 043821 (2012).

M.-J. Hwang, et al., Phys. Rev. Lett. 115, 180404 (2015).

Matteo Bina

Matteo Paris

Louis Garbe

Arne Keller

Matteo Bina

Matteo Paris

Louis Garbe

Arne Keller

Quantum Fisher information

Protocol duration

Ground state

Squeezing

$$\xi = -\frac{1}{4}\log(1 - g^2)$$

 $|\psi(g)\rangle = \hat{S}(\xi)|0\rangle \otimes |\downarrow\rangle$

Q.F.I. $G_A = 4[\langle \partial_A \psi | \partial_A \psi \rangle + (\langle \partial_A \psi | \psi \rangle)^2]$

Quantum Fisher information

Protocol duration

Ground state $|\psi(g)
angle = \hat{S}(\xi)|0
angle \otimes |\downarrow
angle$

Squeezing

$$\xi = -\frac{1}{4}\log(1-g^2)$$

Q.F.I. $G_A = 4[\langle \partial_A \psi | \partial_A \psi \rangle + (\langle \partial_A \psi | \psi \rangle)^2]$

Quantum Fisher information Protocol duration $\epsilon_{\rm np} = \omega_0 \sqrt{1 - g^2}$ $|\psi(g)\rangle = \hat{S}(\xi)|0\rangle \otimes |\downarrow\rangle$ Ground state 2 $\xi = -\frac{1}{4} \log(1 - g^2)$ Squeezing 1.5 ϵ_{np} ϵ_{sr} Energy gap 1 $G_A = 4[\langle \partial_A \psi | \partial_A \psi \rangle + (\langle \partial_A \psi | \psi \rangle)^2]$ Q.F.I. 0.5 0 $G_{\Omega \ 0.10_{\rm f}}$ $\Omega/\omega_0 = 20$ 1.5 0.5 1 2 0 0.08 100 g0.06 500 0.04 0.02 $\frac{1}{1.2}g$ 0.9 1.0 1.1 0.8 **Critical** $G_A \simeq \frac{1}{32 A^2 (1-q)^2}$ scaling **Q.F.I.**

Quantum Fisher information Protocol duration $\epsilon_{\rm np} = \omega_0 \sqrt{1 - g^2}$ $|\psi(q)\rangle = \hat{S}(\xi)|0\rangle \otimes |\downarrow\rangle$ Ground state 2 $\xi = -\frac{1}{4}\log(1-g^2)$ Squeezing 1.5 ϵ_{np} ϵ_{sr} Enersy gap 1 $G_A = 4[\langle \partial_A \psi | \partial_A \psi \rangle + (\langle \partial_A \psi | \psi \rangle)^2]$ Q.F.I. 0.5 0 $G_{\Omega \ 0.10}$ $\Omega/\omega_0 = 20$ 0.5 1 1.5 2 0 0.08 100 g0.06 500 0.04 (from time-dependent perturbation theory) 0.02 $v(g) \ll \frac{2g}{1+q^2} \omega_0 (1-g^2)^{3/2}$ Adiabatic evolution $\frac{1}{1.2}g$ 0.8 0.9 1.0 1.1 **Critical scaling** Critical $T = \int_{0}^{g} \frac{ds}{v(s)} \sim \frac{1}{\omega_{0N}/1 - q}$ $G_A \simeq \frac{1}{32 A^2 (1-a)^2}$ **Evolution** scaling time **Q.F.I.**

Results

Hamiltonian:

$$G_{\omega_0} \sim \langle \hat{N} \rangle^2 T^2$$

Saturate Heisenberg limit

14

Driven-dissipative:

 $G_{\omega_0} \sim \langle \hat{N} \rangle T$

Optimal in noisy Q. Metrology

Results

Optimal scaling in spite of the critical slowing down!

15

15

15

15

Finite-component phase transitions

- S. Felicetti and A. Le Boité, Phys. Rev. Lett. 124, 040404 (2020).

Finite-component phase transitions

- S. Felicetti and A. Le Boité, Phys. Rev. Lett. 124, 040404 (2020).

Take place in driven-dissipative systems

Pumped Kerr resonators

- N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys. Rev. A 94, 033841 (2016).

- R. Rota, F. Minganti, C. Ciuti, and V. Savona, Phys. Rev. A 112, 110405 (2019).

Finite-component phase transitions

Implementations in quantum technologies

Atomic Systems

- A. Dareau et al., PRL 121, 253603 (2018).
- M.-L. Cai et al., Nat. Comm. 12, 1126 (2021).

Circuit QED

- D. Marcovic et al., PRL **121**, 040505 (2018).

Polaritonics

- S. R. K. Rodriguez et al., PRL 118, 247402 (2017).
- T. Fink et al., Nat. Phys 14, 365 (2018).

Opto/electromechanics

- G. Peterson et al., PRL **123**, 247701(2019).

Roberto di Candia

Fabrizio Minganti

Kirill Petrovnin

G. Sorin Paraoanu

- R. Di Candia *, F. Minganti *, K.V. Petrovnin, G. S. Paraoanu, and S. Felicetti, arXiv:2107.04503 (2021).

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2 \left\{ aa^{\dagger},\rho \right\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

- P. Krantz et al, New J. Phys. **15** 105002 (2013).

19

- N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys. Rev. A 94, 033841 (2016).

- N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys. Rev. A 94, 033841 (2016).

- N. Bartolo, F. Minganti, W. Casteels, and C. Ciuti, Phys. Rev. A 94, 033841 (2016).

Magnetometry

20

- P. Krantz et al, New J. Phys. **15** 105002 (2013).

Magnetometry

20

 $\lambda/4$

MW

PUMP

Magnetometry

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2 \left\{ aa^{\dagger},\rho \right\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

- P. Krantz et al, Nat. Comm. **7** 11417 (2016).

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2 \left\{aa^{\dagger},\rho\right\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

Dispersive coupling
$$H_{qc} = \delta \omega \ \hat{\sigma}_z \hat{a}^{\dagger} \hat{a}$$

- P. Krantz et al, Nat. Comm. **7** 11417 (2016).

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2 \left\{ aa^{\dagger},\rho \right\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

Dispersive coupling
$$H_{qc} = \delta \omega \ \hat{\sigma}_z \hat{a}^{\dagger} \hat{a}$$

- P. Krantz et al, Nat. Comm. **7** 11417 (2016).

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2 \left\{ aa^{\dagger},\rho \right\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

Dispersive coupling
$$H_{qc} = \delta \omega \ \hat{\sigma}_z \hat{a}^\dagger \hat{a}$$

22

- P. Krantz et al, Nat. Comm. **7** 11417 (2016).

Readout error

Master equation

$$\dot{\rho} = -i[H,\rho] + \kappa N(a^{\dagger}\rho a - 1/2\{aa^{\dagger},\rho\})$$

Hamiltonian

$$\hat{H}_{\mathrm{Kerr}}/\hbar = \omega \hat{a}^{\dagger} \hat{a} + \frac{\epsilon}{2} (\hat{a}^{\dagger 2} + \hat{a}^2) + \chi \hat{a}^{\dagger 2} \hat{a}^2$$

Dispersive coupling
$$H_{qc} = \delta \omega \ \hat{\sigma}_z \hat{a}^{\dagger} \hat{a}$$

22

- P. Krantz et al, Nat. Comm. **7** 11417 (2016).

Qubit degradation is proportional to:

$$\eta = N\delta\omega^2/(4g^2)$$

Readout error

Conclusions

• Finite-component PT for optimal quantum sensing

- L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, Phys. Rev. Lett. 124, 120504 (2020).

Conclusions

1- Quantum Magnetometry

2- Qubit readout

Finite-component PT for optimal quantum sensing

- L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, Phys. Rev. Lett. 124, 120504 (2020).

Critical parametric quantum sensor

- R. Di Candia*, F. Minganti*, K.V. Petrovnin, G. S. Paraoanu, and S. Felicetti, arXiv:2107.04503 (2021).

Conclusions

Finite-component PT for optimal quantum sensing

- L. Garbe, M. Bina, A. Keller, M. G. A. Paris, and S. Felicetti, Phys. Rev. Lett. 124, 120504 (2020).

Critical parametric quantum sensor

- R. Di Candia*, F. Minganti*, K.V. Petrovnin, G. S. Paraoanu, and S. Felicetti, arXiv:2107.04503 (2021).

Recent works

1- Quantum Magnetometry

2- Qubit readout

Sensing protocols

QPT phenomenology

- Y. Chu et al., PRL **126**, 010502 (2021). H. Zhu et al. Phys. Rev. Lett. **125**, 050402 (2020).
- Gietka et al., arXiv:2103.12939 (2021). R. Puebla et al. Phys. Rev. B 102, 220302(R) (2021).
- -Y. Hu et al., arXiv:2101.01504 (2021).

Experime

Perspectives

- Y Chu, S Zhang, B Yu, J Cai, PRL **126**, 010502 (2021).

24

- L. Garbe, O. Abah, S. Felicetti, R. Puebla, arXiv:2110.04144 (2021).

Perspectives

- Y Chu, S Zhang, BYu, J Cai, PRL **126**, 010502 (2021).

24

- L. Garbe, O. Abah, S. Felicetti, R. Puebla, arXiv:2110.04144 (2021).

Open questions

- Can we overcome the critical slowing down?

- What is the impact of previous knowledge?