Rules and Exceptions in Language Dynamics

In all languages, rules have exceptions in the form of irregularities. Since rules make a language efficient, the persistence of irregularity is an anomaly. How language systems become rule governed, how and why they sustain exceptions to rules? Frequent words are unlikely to change over time (e.g., frequent verbs tend to maintain an irregular past tense form). What is the role of frequency in maintaining exceptions to rules?… Read the rest

Mixing by degree in signed social networks

Social networks have empirically been found to be assortative (i.e., the degree of neighboring nodes are positively correlated), while other networks (e.g., technological, biological) show the opposite pattern (disassortative). Why is that so?
How do these patterns change in signed networks, where relations indicate trust/distrust, friendship/enmity? Do individuals who dislike many others tend to dislike each other, or do they dislike those who dislike only very few others?… Read the rest

Dynamics of Virus-Host interaction

In the case of fast mutating viruses (e.g., Influenza virus), the virus-host interaction is driven by cross-immunity: after being infected by a strain, the host acquires immunity to a set of other strains antigenically similar to the infecting one (i.e., triggering the same host immune response). The evolutionary dynamics of viruses is therefore ruled by their relative antigenic distance. Can we understand the non trivial relation between antigenic and genetic distance?… Read the rest

Fractures and crack propagation

The intermittent and self-similar fluctuations displayed by a slow crack during the propagation in a heterogeneous medium can be quantitatively described by an extension of a classical statistical model for fracture. The model yields the correct dynamical and morphological scaling, and allows to demonstrate that the scale invariance originates from the presence of a non-equilibrium, reversible, critical transition which, in the presence of dissipation, gives rise to self-organized critical behaviour.… Read the rest

Disorder driven non-equilibrium phase transition: the Random field Ising model

In hard magnetic materials, the domain walls movement or even creation is suppressed, and other mechanisms, like domains nucleation and coherent spin rotation enter in the process of magnetization reversal. For these kind of materials a description in terms of spin models is more appropriate. We focused on the non-equilibrium properties of the random field Ising model (RFIM), to describe the competition between quenched disorder and exchange interactions and their effect on the hysteretic behavior.… Read the rest

Systems with multiplicative noise

Problems susceptible to be mathematically represented by stochastic Langevin equations including a multiplicative noise abound not only in physics, but also in biology, ecology, economy, or social sciences. In a broad sense a Langevin equation is said to be multiplicative if the noise amplitude depends on the state variables themselves. In this sense, problems exhibiting absorbing states, i.e. fluctuation-less states in which the system can be trapped, are described by equations whose noise amplitude is proportional to the square-root of the (space and time dependent) activity density, vanishing at the absorbing state.… Read the rest

Crackling noise: the Barkhausen effect

The term “crackling noise” refers to the signal that some disordered systems produce as a response to an external driving field smoothly changing in time. Due to the presence of disorder, crackling signals are extremely irregular, despite the steady increase of the external forcing. They are typically characterized by a sequence of pulses of very different sizes and durations, separated by quiescence intervals.… Read the rest

Dynamic hysteresis in thin and ultra-thin films

The physics of thin and ultra-thin magnetic films has been extensively studied in the recent past, because of its important implications for applications to high frequency devices. Power losses in ferromagnetic materials generally depend on the frequency of the applied field, a phenomenon referred to as dynamic hysteresis. The problem has great importance from a purely theoretical point of view, for the understanding of the dynamics of disordered magnetic systems, which represents a central issue in non–equilibrium statistical mechanics.… Read the rest