Posts

Dynamics of self-gravitating systems

A System with long-range interactions is characterized by an inter-particle potential which decays at large distances with a power law exponent which is smaller than the dimension of the embedding space. Classical examples include for instance: self-gravitating systems, unscreened Coulomb systems, ion beams, wave-particle systems of relevance to plasma physics and others.

The behaviour of the above mentioned systems is interesting both from the point of view of stable (or metastable) states, because equilibrium statistical mechanics shows new types of phase transitions and cases of ensemble inequivalence, and from the dynamical point of view, because they display peculiar fast relaxation followed by the formation of quasi-stationary states that are related to the underlying Vlasov-like equation.… Read the rest

Matter density fields in the early universe

The most prominent feature of the initial conditions of the matter spatial distribution in the early universe, in standard theoretical models, derived from inflationary mechanisms, is that matter density field presents on large scale super-homogeneous features. This means the following. If one considers the paradigm of uniform distributions, the Poisson process where particles are placed completely randomly in space, the mass fluctuations in a sphere of radius R growths as the volume of the sphere.… Read the rest

Total gravitational force and the classification of long range interactions

In equilibrium statistical mechanics the distinction between short and long range interactions is given by the integrability or not of the pair potential. However for what concerns only the clustering dynamics of a particle distribution under the effect of an attractive pair interaction, it seems by recent works that the distinction is given by the integrability of the pair force instead of the potential.… Read the rest