Posts

Thermal convection in granular gases with dissipative lateral walls

Convection in molecular fluids is provided by the competition between gravity and an adverse temperature gradient (two thermostats, the hotter below, the colder above). In a granular gas it can be achieved by a single thermostat at the base, for instance a vibrating piston. Energy dissipation provides the “second thermostat” which spontaneously forms gradient and may stabilize a convective state. Here we have demonstrated that even the simple dissipation in the collision between grains and lateral walls is sufficient to trigger convection, without any critical threshold.… Read the rest

Mechanism of self-propulsion in 3D-printed active granular particles

 

 

 We have reproduced the self propulsion of bacteria and animals with 3d-printed “active granular particles”. Those small artificial insects walk on a rough vibrated plate because of a subtle interplay between material elastic properties and solid-on-solid friction. The advantage of 3d-printed objects is in the possibility to tune certain features (here the inclination of “legs”) in order to verify theoretical predictions and establish an optimal shape for running.… Read the rest

Cages and anomalous diffusion in vibrated dense granular media


Caging is the typical microscopic phenomenon that “traps” molecules in a liquid at low temperature. The usual Brownian Motion of a tracer experiences a temporary “dynamical arrest” which eventually is broken restoring normal diffusion. In this work we have shown that at intermediate densities and temperature the same phenomenon occurs in granular liquids. At large densities and lower temperatures the late normal diffusion is replaced with superdiffusion.… Read the rest

Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction

A Brownian Ratchet is a small engine which is conceived to extract work from molecular fluctuations. Examples of Brownian Ratchets occur in the cell, see for instance this nice movie about kinesin.


As well explained by Richard Feynmann, a Brownian Ratchet cannot perform its own task in an equilibrium environment, i.e. the fluctuations feeding energy to the ratchet cannot originate from a single thermal bath, in accordance with the second principle of thermodynamics.… Read the rest

Shaken Granular Lasers

 

A random laser is usually obtained pumping light through a disordered medium. The dynamics of light through a heterogeneous configuration of scatterers and cavities provides emitted spectra with random and fluctuating peaks which have a wide range of applications and are nowadays subject to an intense theoretical activity. In this work we have added a new flavour to the idea of random lasers, replacing the usually static disordered medium with a vibrofluidized granular material.… Read the rest

GRANULAR CHAOS

Granular fluids to explore non-equilibrium statistical mechanics

Founding Body: MIUR, Italy (reserved to selected ERC-Starting Grants 2007)
Total grant: € 1200k
Principal Investigator: Andrea Puglisi
Other participants:
Project duration: 2009-2014
Website:
Read the rest