Differential and absolute negative mobility in steady laminar flows

  Nonlinear response in out-of-equilibrium systems can show counter-intuitive behaviors, for instance cases where the force increases but the response decreases (negative differential mobility). Sometimes the response crosses zero and changes sign with respect to the force (absolute negative mobility). In classical physics this is usually observed within complicate models with obstacles and traps. We have demonstrated such complex non-linear phenomena in a much simpler and realistic system, ie.… Read the rest

Heat, temperature and Clausius inequality in a model for active brownian particles

Living matter at the microscale, many kinds of cells, bacteria and other organisms, self-propel through a viscous fluid which acts as a thermal bath, dissipating the energy provided by the internal motor (pseudopoda, flagella, etc.). This energetic balance is ruled by non-equilibrium thermodynamics, as for heat engines. In this theoretical work we have given a mesoscopic description of this process, which allows to measure a local heat dissipation and a local non-equilibrium temperature (associated to self-propulsion and to the forces driving the active particle) which together provide a definition of active entropy production which satisfies the Clausius inequality.… Read the rest

Granular Dynamics Laboratory

Since July 2010, the Granular Dynamics Laboratory is operative – originally in room “010” and (from november 2012) –  in room “012” (ground floor of Fermi Building of the Physics Department) at the Sapienza unit of ISC. The laboratory includes two main experimental setups:


  1. Vertical vibration (2d and 3d granular experiments): an electrodynamic shaker LDS V455, which can reach a maximum acceleration of 105g, powered by a PA1000L power amplifier.
Read the rest

Granular Gases to explore Non-Equilibrium Statistical Mechanics

How do properties of molecular trajectories reflect on large scale transport and relaxation properties? Is it possible to directly and experimentally verify the Boltzmann’s program, connecting the microscopic level to the macroscopic description? Can we zoom into an out-of-equilibrium fluid and reveal, in the laboratory, its underlying microscopic reversibility? These are some of the questions addressed by the GRANULARCHAOS project, funded by an IDEAS grant (originally selected by ERC and then funded by italian FIRB) for five years.… Read the rest